Springe direkt zu Inhalt

The effect of polyglycerol sulfate branching on inflammatory processes.

F. Paulus, R. Schulze, D. Steinhilber, M. Zieringer, I. Steinke, P. Welker, K. Licha, S. Wedepohl, J. Dernedde, R. Haag – 2014

In this study, the extent to which the scaffold architecture of polyglycerol sulfates affects inflammatory processes and hemocompatibility is investigated. Competitive L-selectin binding assays, cellular uptake studies, and blood compatibility readouts are done to evaluate distinct biological properties. Fully glycerol based hyperbranched polyglycerol architectures are obtained by either homopolymerization of glycidol (60% branching) or a new copolymerization strategy of glycidol with ethoxyethyl glycidyl ether. Two polyglycerols with 24 and 42% degree of branching (DB) are synthesized by using different monomer feed ratios. A perfectly branched polyglycerol dendrimer is synthesized according to an iterative two-step protocol based on allylation of the alcohol and subsequent catalytic dihydroxylation. All the polyglycerol sulfates are synthesized with a comparable molecular weight and degree of sulfation. The DB make the different polymer conjugates perform different ways. The optimal DB is 60% in all biological assays.

Titel
The effect of polyglycerol sulfate branching on inflammatory processes.
Verfasser
F. Paulus, R. Schulze, D. Steinhilber, M. Zieringer, I. Steinke, P. Welker, K. Licha, S. Wedepohl, J. Dernedde, R. Haag
Datum
2014
Kennung
10.1002/mabi.201300420
Quelle/n
Zitierweise
Macromol. Biosci. 2014, 14, 643-654
Art
Text
dfg_logo