Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochrome c for Probing Local Electric Fields

J. Völler, H. Biava, B. Koksch, P. Hildebrandt, N. Budisa – 2015

Cytochrome c (cyt c), a redox protein involved in diverse fundamental biological processes, is among the most traditional model proteins for analyzing biological electron transfer and protein dynamics both in solution and at membranes. Studying the role of electric fields in energy transduction mediated by cyt c relies upon appropriate reporter groups. Up to now these had to be introduced into cyt c by in vitro chemical modification. Here, we have overcome this restriction by incorporating the noncanonical amino acid p-cyanophenylalanine (pCNF) into cyt c in vivo. UV and CD spectroscopy indicate preservation of the overall protein fold, stability, and heme coordination, whereas a small shift of the redox potential was observed by cyclic voltammetry. The C≡N stretching mode of the incorporated pCNF detected in the IR spectra reveals a surprising difference, which is related to the oxidation state of the heme iron, thus indicating high sensitivity to changes in the electrostatics of cyt c.

Titel
Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochrome c for Probing Local Electric Fields
Verfasser
J. Völler, H. Biava, B. Koksch, P. Hildebrandt, N. Budisa
Datum
2015
Kennung
10.1002/cbic.201500022
Zitierweise
ChemBioChem, 2015, 16, 742–745
Art
Text
dfg_logo