Synthesis of the Pitstop family of clathrin inhibitors

Robertson MJ, Deane FM, Stahlschmidt W, von Kleist L, Haucke V, Robinson PJ, McCluskey A. – 2014

This protocol describes the synthesis of two classes of clathrin inhibitors, Pitstop 1 and Pitstop 2, along with two inactive analogs that can be used as negative controls (Pitstop inactive controls, Pitnot-2 and Pitnot-2-100). Pitstop-induced inhibition of clathrin TD function acutely interferes with clathrin-mediated endocytosis (CME), synaptic vesicle recycling and cellular entry of HIV, whereas clathrin-independent internalization pathways and secretory traffic proceed unperturbed; these reagents can, therefore, be used to investigate clathrin function, and they have potential pharmacological applications. Pitstop 1 is synthesized in two steps: sulfonation of 1,8-naphthalic anhydride and subsequent reaction with 4-amino(methyl)aniline. Pitnot-1 results from the reaction of 4-amino(methyl)aniline with commercially available 4-sulfo-1,8-naphthalic anhydride potassium salt. Reaction of 1-naphthalene sulfonyl chloride with pseudothiohydantoin followed by condensation with 4-bromobenzaldehyde yields Pitstop 2. The synthesis of the inactive control commences with the condensation of 4-bromobenzaldehyde with the rhodanine core. Thioketone methylation and displacement with 1-napthylamine affords the target compound. Although Pitstop 1–series compounds are not cell permeable, they can be used in biochemical assays or be introduced into cells via microinjection. The Pitstop 2–series compounds are cell permeable. The synthesis of these compounds does not require specialist equipment and can be completed in 3–4 d. Microwave irradiation can be used to reduce the synthesis time. The synthesis of the Pitstop 2 family is easily adaptable to enable the synthesis of related compounds such as Pitstop 2-100 and Pitnot-2-100. The procedures are also simple, efficient and amenable to scale-up, enabling cost-effective in-house synthesis for users of these inhibitor classes.

Titel
Synthesis of the Pitstop family of clathrin inhibitors
Verfasser
Robertson MJ, Deane FM, Stahlschmidt W, von Kleist L, Haucke V, Robinson PJ, McCluskey A.
Datum
2014
Kennung
DOI: 10.1038/nprot.2014.106
Quelle/n
Zitierweise
Nat Protoc., 2014, 9(7), 1592-1606
Art
Text
dfg_logo